SWAN\textsubscript{ASSIST}: Semi-Automated Detection of Code-Specific, Security-Relevant Methods

Goran Piskachev*, Lisa Nguyen Quang Do1, Oshando Johnson† and Eric Bodden§
Fraunhofer IEM∗‡§, Paderborn University†§ \newline *goran.piskachev@iem.fraunhofer.de, †lisa.nguyen@upb.de, ‡oshando.johnson@iem.fraunhofer.de, §eric.bodden@upb.de

Abstract—To detect specific types of bugs and vulnerabilities, static analysis tools must be correctly configured with security-relevant methods (SRM), e.g., sources, sinks, sanitizers and authentication methods—usually a very labour-intensive and error-prone process. This work presents the semi-automated tool SWAN\textsubscript{ASSIST}, which aids the configuration with an IntelliJ plugin based on active machine learning. It integrates our novel automated machine-learning approach SWAN, which identifies and classifies Java SRM. SWAN\textsubscript{ASSIST} further integrates user feedback through iterative learning. SWAN\textsubscript{ASSIST} aids developers by asking them to classify at each point in time exactly those methods whose classification best impact the classification result. Our experiments show that SWAN\textsubscript{ASSIST} classifies SRM with a high precision, and requires a relatively low effort from the user. A video demo of SWAN\textsubscript{ASSIST} can be found at https://youtu.be/fSyD3V6EQOY. The source code is available at https://github.com/secure-software-engineering/swan.

Index Terms—Program Analysis, Machine-learning, Security

I. INTRODUCTION

More and more companies use static analysis to detect security vulnerabilities in their code, configuring them for various types of bugs and vulnerabilities such as the SANS top 251. For such analyses to be as effective as possible, they must be adapted to the codebase. One particular challenge is to provide the analyses with the correct security-relevant methods (SRM): sources, sinks, etc.

Lists of SRM are generally created manually by security experts. As a result, they tend to be incomplete, causing an analysis to miss vulnerabilities, or to signal false positives. For instance, Arzt et al. show that, static analysis tools frequently miss a large majority of relevant findings due to insufficient configurations1. They present SUSI, an automated machine-learning approach for the detection of two types of SRM (sources and sinks) in the Android framework. In later work, Sas et al.2 extend SUSI to detect sources and sinks to general Java programs. Both approaches are run ahead of time, before the analysis is deployed.

However, both approaches are specific to one framework: the Android framework for SUSI and Java runtime for Sas et al.’s approach. SRM contained in codebases that use specific libraries, code constructs, or custom SRM are likely to be missed. In this paper, we present SWAN\textsubscript{ASSIST}, an IntelliJ plugin that works on top of SWAN (Security methods for WeAkNess detection), a machine-learning approach that classifies methods into SRM types (sources, sinks, sanitizers, or authentication methods) and specific CWE-2 SRM. SWAN\textsubscript{ASSIST} allows users to actively feed new SRM from their code by labeling methods, thus adapting the classification to their own codebase. In addition, its recommender system, SuggestSWAN, proposes methods for classification by the user that are more likely to have the strongest impact on the classification. SWAN\textsubscript{ASSIST} can be used by developers at coding or debugging time, or by security teams to configure analysis tools before they are deployed.

We show that SWAN\textsubscript{ASSIST} can improve SWAN’s base precision with minimal user effort in labeling methods.

II. DISCOVERING SRM

Listing1 contains a potential SQL injection (CWE-89) from line 3 to line 7 and open redirect (from line 13 to 19).

```java
protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
    try {
        String userId = request.getParameter('userId');
        user1d = ESAPI.encoder().encodeForSQL(new MySQLCodec(), userId);
        Statement st = conn.createStatement();
        String query = "SELECT * FROM User WHERE userId=" + user1d + ";";
        ResultSet res = st.executeQuery(query);
        String url = "https://" + userId + ".company.com";
        response.sendRedirect(url);
    } catch (Exception e) { ... }
}
```

Listing 1: Potential SQL injection (from line 3 to 7) and open redirect (from line 13 to 19).

1http://cwe.mitre.org/top25/

2http://cwe.mitre.org/
can be detected using sources, sinks, and sanitizers, that are required to configure data-flow analyses (e.g., in Listing 1). Authentication methods are required for specific CWEs such as CWE-306 (Missing Authentication for Critical Function).

- **R2**: SRM lists should be specific to each CWE: As seen in Listing 1, different SRM should be used for different CWEs.

- **R3**: SRM lists should be specific to the code base: Since different applications can use different libraries, or define their own custom methods, not all SRM can be defined in advance. They should instead be derived from the code of the application or its libraries.

- **R4**: The detection of SRM should be automated: The Java Spring framework contains more than 30,000 methods. Real-life applications use many such dependencies. As a result, a fully manual definition of the SRM is not feasible.

- **R5**: The detection of SRM should involve the user: In different contexts, different methods can be used for different purposes. To best determine which methods are relevant SRM, it is important to allow the user to correct the set of SRM if the automated approach is insufficiently precise.

III. SRM Classification With SWAN

Figure 1 illustrates the SWAN and SWANASSIST systems. SWAN runs the automated classification twice: in the first iteration, it classifies all methods of the analyzed program and libraries into general SRM classes (R1): sources (So), sinks (Si), sanitizers (Sa), authentication methods, or none. In the second iteration, it discards the methods marked with none, and classifies the remaining SRM into the individual CWEs (R2): CWE-78, CWE-79, CWE-89, CWE-306, CWE-601, CWE-862, and CWE-863, per SRM class.

SWAN uses 25 types of binary machine-learning features based on method signature, modifiers, parameter and return types, and intra-procedural data-flows, instantiated into 206 concrete. For example, the feature instance methodClassContainsOAuth, which is used to indicate an authentication method, is of type MethodClassContains. Overall the features of SWAN are designed to address R1–R2, targeted in particular for the detection of sanitizers, authentication methods, and different types of CWEs according to the SANS 25 classification.

To obtain the feature matrix, SWAN uses the Soot program analysis framework. As its machine-learning module, it uses WEKA’s SVM learner as it showed the best F-measure. The training set contains 235 Java methods collected from 10 popular and diverse Java libraries (Spring, jsoup, Google Auth, Pebble, jguard, WebGoat, and four Apache frameworks), annotated with SRM types and CWEs. We selected methods to cover positive and negative examples for the features used for each SRM and CWE classification. SWAN accepts a Java program or library as its test set, and classifies its methods in the SRM types and CWEs.

SWAN is implemented as a standalone command line Java program with four parameters: a path to a directory containing the test dataset, a link to a Json file containing the signatures of the methods from the training sets, a path to a directory containing the source code implementation of the methods listed in the Json file, and a path of a directory where the output files should be stored.

SWAN can be extended with new CWEs as follows:

- add a description of the CWE in the CWE index,
- create new feature instances specific to the CWE,
- match the feature instances to the classes (SRM types of CWEs), as shown in Listing 2
- adjust the training set by (1) marking existing methods with the new CWE and (2) adding methods if necessary, to ensure that the training set contains at least one positive and one negative example per feature instance.

Listing 2: Matching a feature instance classNameContainsSql to the categories Source, Sink, CWE-89, and None.

```java
12 IFeature classNameContainsSql = new MethodClassContainsNameFeature("sql");
13 addFeature(classNameContainsSql, new HashSet<>(Arrays.asList(Category.SOURCE, Category.SINK, Category.CWE089, Category.NONE)));
Listing 2: Matching a feature instance classNameContainsSql to the categories Source, Sink, CWE-89, and None.
IV. ACTIVE LEARNING WITH SWANASSIST

To refine SWAN, SWANASSIST integrates developer feedback in order to adapt the learning algorithm to the code base under development (R3 and R5). SWANASSIST allows the developer to edit the training set directly in their Integrated Development Environment (IDE), and includes this data in the training set for the next learning iteration, as shown in Figure 1. The developer can add or remove methods of the training set, or change the classes of a method.
In addition, SWAN\textsubscript{ASSIST} generates a list of methods that—if classified differently—would yield the most impact on the next run of SWAN, based on the feature matrix, and proposes them to the user through a recommender system: SuggestSWAN (dashed edge in Figure 1). This identifies the most useful methods to the classification.

We have implemented SWAN\textsubscript{ASSIST} as an IntelliJ plugin. It integrates into the development environment a GUI for editing the SRM lists and for executing SWAN, as shown in Figure 2. SWAN’s training set is shown on the rightmost view of the GUI 2, called the SWAN\_Assist view. Methods in this view can be filtered by classification class or by file (button in (1)). The pop-up dialog in the center 3 allows the developer to edit the training set. It is accessible through the SWAN\_Assist view or through the context menu when a method in the code editor is selected. With this dialog, the developer can add or remove classes for the method. Methods can be added to the training set through the context menu, and removed through the context menu or using the SWAN\_Assist view. SRM markers are also shown on the left side of the editor 4.

SWAN\textsubscript{ASSIST} allows the developer to re-run the classification by clicking on the icon in the SWAN\_Assist view 1. This re-runs SWAN in the background, and updates the list of SRM (dotted edge in Figure 1). Methods that were removed are shown in red, and can be returned to the training set by using the restore operation from the context menu. Otherwise, they are removed from the list on the next run.

V. ARCHITECTURE

Figure 3 shows the components of SWAN\textsubscript{ASSIST}. SWAN, and external components (shown in gray). There are three external components: WEKA, Soot and JsonSimple. WEKA is a machine-learning library used for the classification 4. SWAN uses Soot to load the source code of the training and testing sets, and to evaluate the methods against the features 3. JsonSimple is used by both SWAN and SWAN\textsubscript{ASSIST} for manipulating the sets of methods serialized in Json format 6.

MOISLauncher prepares the input parameters (training and testing sets) and calls SWAN in separated thread. Once the results are available, they are stored and AssistCore is notified.

SWAN\textsubscript{ASSIST} has its own model for methods, DataModel, which can be serialized in Json format using JsonSimple. This model contains the source code information for each methods and it maps the GUI elements, such as icons and labels.

The plugin SWAN\textsubscript{ASSIST} uses three components of the IntelliJ framework: ActionSystem, UI, and PSI. UI provides the Dialog and ToolWindow user interface elements that AssistUI uses to display the SWAN results. These elements are populated by AssistCore. The main communication between the IntelliJ framework and the plugin is implemented through the ActionSystem, which is a listener/notifier design provided by IntelliJ. User actions on the GUI are handled by this component. The PSI (Program Structure Interface) component provides information about the currently opened project. This is used by AssistCore to set the GUI filters, configure SWAN, and receive updates about changed classes or methods.

More details can be found in our publication 5.

VI. EVALUATION

We evaluated the precision of SWAN on 12 open-source Java libraries: two frameworks from the mobile domain (Android and Apache Cordova), eight web frameworks (Apache Lucene, Apache Stratos, Apache Struts, Dropwizard, Eclipse Jetty, GWT, Spark, and Spring), one framework from the home automation domain (Eclipse SmartHome), and one utility framework (Apache Commons). We applied SWAN to the 12 libraries, and randomly selected 50 methods for each pair of library/class, whose classification we then manually verified.

SWAN yields an overall precision of 0.76. It is more precise for detecting SRM types (0.826) than for CWEs (0.677). Its best precision is of 0.99, for Android’s sources, and worst, of 0.44, for GTW and CWE-78. SWAN’s overall precision is consistent over different types of Java applications, but can be improved with SWAN\textsubscript{ASSIST}.

To evaluate the efficiency of SuggestSWAN with respect to the manual work required by the user, we used the Gene Expression Atlas (GXA) 7 application, which yields a relatively low precision with the base SWAN. This allows us to showcase the potential of the active learning approach. As our ground truth, we manually classified all 1,638 methods of...
GXA, 286 of which were identified as sources. We compare the precision of the Srm lists obtained when adding to the training set randomly selected method pairs, against pairs obtained with SuggestSWAN. Figure 4 shows the precision, starting from the base SWAN until all 819 pairs are added to the training set. The random graph is averaged over 10 runs. We repeated the experiments also for sinks and methods related to CWE-89. Both show similar trend like the sources. Because of space limitation we omit these graphs.

The evolution of the precision for the random recommender is linear, i.e. it does not help the classification. SWAN has a fast increase in precision at the beginning, showing that the recommender is efficient in selecting the methods with the most impact first. This maximizes the impact of the classification and minimizes the user’s effort. The precision reaches 0.8 at iteration 31 (from 0.75 at iteration 1), with 60 labeled methods (4% of the total number of methods). Using SuggestSWAN on GXA, it yields a high precision significantly faster than with a random selection of methods.

VII. RELATED WORK

SusI is a machine-learning approach to detect Android sources and sinks. SWAN extends SusI to be able to find sanitizers and authentication methods. SWAN sub-classifies the Srm into CWEs, unlike SusI which sub-classifies its sources and sinks into Android-specific categories such as bluetooth, browser, etc. SWAN is applicable to general Java, including the Android framework, and its extension SWANASSIST is able to further adapt it to specific codebase. Sas et al. [2] generalize SusI to Java applications, but do not further sub-classify in CWE classes, nor do they support sanitizers and authentication methods, or provide active learning functionalities.

JoanAudit [8] provides hand-crafted lists of sources, sinks, and validators specific to particular CWEs. However, the lists are not complete, and only contain Srm for targeted examples of specific libraries. SWAN is able to automatically detect Srm for any Java application and its libraries, with minimal manual work. The automated Srm extractor Merlin [9] uses probabilistic inference to detect string-based vulnerabilities for taint analyses. The approach used by SWAN can be extended to more types of vulnerabilities, on top of being able to adapt to the codebase with SWANNASSIST.

VIII. CONCLUSION

In this paper, we present the Srm detector SWAN and the SWANASSIST IntelliJ IDEA plugin, which help developers to create Srm lists specific to selected CWEs and specific codebases. We demonstrated tool features of SWAN and SWANASSIST, and detailed their architecture, as well as the machine-learning model behind it. Our tool enables users to adapt the configuration of static analyses in semi-automatic way with relatively low effort. Using this tool, static analysis tools can adapt to individual projects, with minimal work and required knowledge from the developer.

ACKNOWLEDGEMENT

This research has been funded by the BMBF Software Campus, the DFG project RUNSECURE, and the NRW Research Training Group on Human Centered Systems Security.

REFERENCES